
LLNL-JRNL-644626

Large-Scale Seismic Signal
Analysis with Hadoop

T. Addair, D. Dodge, W. Walter, S. Ruppert

October 10, 2013

Computers & Geosciences

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

 1

Large-Scale Seismic Signal Analysis with Hadoop 1

 2

 3

 4

 5

T. G. Addair1, D. A. Dodge1, W. R. Walter1, S. D. Ruppert1 6

 7

 8

 9

1Lawrence Livermore National Laboratory 10
7000 East Ave, Livermore, CA 94550, USA 11

 12

 13

 14

 15

 16

 17

 18

September, 2013 19

 20
 21

 22
 23
Travis Addair: addair1@llnl.gov 24
Douglas Dodge: dodge1@llnl.gov 25
William Walter: walter5@llnl.gov 26
Stanley Ruppert: ruppert1@llnl.gov 27
 28
 29

Corresponding author: 30
Douglas Dodge 31
Lawrence Livermore National Laboratory 32
7000 East Avenue 33
Livermore, CA 94550 34
MS 046 35
925-423-4951 36
 37

 2

Highlights 38

 A global dataset of over 300 million waveforms has been cross correlated. 39

 The algorithms have been adapted to run as MapReduce jobs on a Hadoop 40

cluster. 41

 Increased parallelism was required to make best use of mappers. 42

 IO was significantly increased but had little impact on performance. 43

 A factor of 19 speedup was achieved relative to initial implementation. 44

 45

 3

Abstract 46

In seismology, waveform cross correlation has been used for years to produce high-47

precision hypocenter locations and for sensitive detectors. Because correlated 48

seismograms generally are found only at small hypocenter separation distances, 49

correlation detectors have historically been reserved for spotlight purposes. 50

However, many regions have been found to produce large numbers of correlated 51

seismograms, and there is growing interest in building next-generation pipelines 52

that employ correlation as a core part of their operation. In an effort to better 53

understand the distribution and behavior of correlated seismic events, we have 54

cross correlated a global dataset consisting of over 300 million seismograms. This 55

was done using a conventional distributed cluster, and required 42 days. In 56

anticipation of processing much larger datasets, we have re-architected the system 57

to run as a series of MapReduce jobs on a Hadoop cluster. In doing so we achieved a 58

factor of 19 performance increase on a test dataset. We found that fundamental 59

algorithmic transformations were required to achieve the maximum performance 60

increase. Whereas in the original IO-bound implementation, we went to great 61

lengths to minimize IO, in the Hadoop implementation where IO is cheap, we were 62

able to greatly increase the parallelism of our algorithms by performing a tiered 63

series of very fine-grained (highly parallelizable) transformations on the data. Each 64

of these MapReduce jobs required reading and writing large amounts of data. But, 65

because IO is very fast, and because the fine-grained computations could be handled 66

extremely quickly by the mappers, the net was a large performance gain. 67

 68

 4

Keywords 69

 Correlation 70

 Hadoop 71

 MapReduce 72

 Seismology 73

 74

 5

1. Introduction 75

It has long been recognized that in collections of seismic data recorded by the same 76

instrument from sources in similar locations there will be many similar 77

seismograms (e.g. Geller and Mueller, 1980, Poupinet et al, 1984). Geller and 78

Mueller (1980) attributed the similarity to the fact that for small magnitude 79

earthquakes, propagation results in an effective low-pass-filtering of the signals to 80

become essentially the Green’s functions, so repeated ruptures of the same asperity 81

produce the same seismogram. 82

 83

Since the initial observations of doublets, researchers have exploited the 84

phenomenon in a variety of different ways. Much work has centered on producing 85

high-precision relocations of clustered seismicity by correlating the waveforms to 86

obtain high-precision relative picks used to relocate the events. For example 87

Fremont and Malone (1987) and Got et al (1994) imaged structures underneath 88

active volcanoes by relocation of multiplets. Rubin et al (1999) imaged seismicity 89

on creeping sections of the Hayward fault. Hauksson and Shearer (2005) relocated 90

327,000 Southern California earthquakes using waveform cross correlation. 91

 92

Waveform correlation can also be used as the basis for highly sensitive detectors. 93

This application has been known since at least the 1960’s (Anstey, 1966) and has 94

been employed on numerous occasions since. Because the correlation “footprint” of 95

high frequency signals is generally quite small, correlation detectors have been used 96

almost exclusively as “spotlight” detectors aimed at small regions of interest. Harris 97

 6

and Dodge (2011) used correlation in combination with subspace detectors (e.g. 98

Harris, 2006) in an automated system to track events in an aftershock sequence. 99

 100

However, interest in using correlation to process events over broader regions has 101

grown. For example Schaff and Richards (2004, 2011) discovered that about 13% of 102

18,000 earthquakes recorded at regional distances in China were sufficiently well 103

correlated that they could be detected and located using waveform correlation. 104

 105

To make better use of correlation relationships in seismic data analysis we need to 106

understand what fraction of observed seismicity displays correlation relationships 107

as functions of observed properties (e.g. source-receiver distance, window-length, 108

bandwidth), and correlated source differences (e.g. location, depth, magnitude). The 109

longer-term goal is to understand the physics underlying observed correlation 110

behavior in terms of source similarity and path effects. 111

 112

However, an impediment to our ability to investigate seismogram correlation is the 113

computational costs of determining these relationships for the tens of thousands of 114

seismic events each year observed at each of the tens of thousands of stations where 115

data is available. Without an extremely efficient way of performing these 116

computations, it is simply too difficult and time consuming to perform the many 117

correlation runs that may be required to achieve a deep understanding of the 118

phenomena under study. 119

 120

 7

This paper presents a methodology to significantly improve the speed at which 121

massive amounts of seismic event data can be processed to look for correlation 122

behavior using a Hadoop architecture. A result is to explore and expose the 123

correlation behavior of large collections of seismic data. An expected outcome after 124

analysis of these results is completed will be to make correlation a more useful tool 125

in both geophysical research and seismic event cataloging operational systems. 126

 127

2. Applying correlation to next-generation seismic 128

pipelines 129

Organizations tasked with monitoring seismicity around the world (e.g. the United 130

States Geological Survey National Earthquake Information Center, the 131

Comprehensive nuclear-Test-Ban Treaty (CTBT) International Data Center, the US 132

National Data Center, the International Seismological Center) and many in specific 133

regions use a processing paradigm that was developed in the 1980’s when average 134

computer processing power was a tiny fraction of what is commonly available now. 135

A single pass is made over the waveform data to extract a compact set of parameters 136

such as seismic phase arrival time, amplitude and period. These are input to a phase 137

associator, and the associated phases are fed to a locator, which produces the 138

hypocenter solution. Although numerous refinements have been added over time, 139

the basic procedure is unchanged. 140

 141

 8

For a variety of purposes, from improving the monitoring of the CTBT, to better 142

characterization of earthquake hazard, to natural resource extraction and reservoir 143

monitoring, it is necessary to detect, locate, and identify seismic events down to 144

very low magnitudes even in the presence of interfering signals. As we near the 145

limits of what can be done using the approach discussed above, pattern-matching-146

based processing looks increasingly attractive. A correlation between a new signal 147

and a reference one, with a sufficiently high statistic, is at once a detection, location, 148

and identification, assuming those properties are known for the template. A 149

correlation detection and identification can be made with as little as one channel, 150

without needing an associator. Since correlation detectors are much more sensitive 151

than the power detectors used in current systems, it is likely that the detection 152

threshold could be pushed down in all regions for which correlators are available. 153

 154

Before considering the engineering aspects of a large-scale correlation-based 155

seismic pipeline, it is crucial to understand how effective we can expect it to be. We 156

need to know how much of the Earth’s seismicity is correlated and how it is 157

distributed. It may be that an appropriate system could only usefully target specific 158

regions, and therefore its scope should be limited accordingly. 159

 160

At Lawrence Livermore National Laboratory (LLNL) we operate a research database 161

of seismic events and waveforms for nuclear explosion monitoring and other 162

applications. The LLNL database contains several million events associated with 163

more than 300 million waveforms at thousands of stations (Figure 1). We have 164

 9

correlated the waveforms in this database as a first step towards understanding the 165

global distribution of correlated seismicity and to begin construction of a library of 166

pattern detectors that could be used in a template-based seismic processing 167

pipeline. 168

 169
In this exploratory effort we correlate catalog events in a number of specific seismic 170

phase windows (e.g. P, S) and the entire signal length, as well as in a number of 171

frequency bands for each window. For each of the distinct station-channels for 172

which we have waveforms, we find all events whose catalog locations are separated 173

by 50 km or less and with average event-station separation <= 90°. For each pair we 174

apply the processing illustrated in Figure 2. In all ~6.8 billion windows are 175

processed. 176

A significant step in processing each window is identification of low SNR windows 177

and artifacts. Low SNR is only a problem because it wastes CPU time, but corrupted 178

and/or bad data (e.g. glitches, dropouts, severe clipping, no recorded signal, etc.) 179

correlate quite well with each other and produce invalid results. 180

To remove artifacts and low SNR seismograms we found it necessary to add a 181

preprocessing step using a decision tree classifier quality control framework to 182

automatically remove the problem signals from the correlation results. 183

Our first full-scale attempt at this process was run on an architecture consisting of 4 184

servers with 44 cores and 613 GB of RAM. All metadata and results were stored in 185

an Oracle database, and the ~50 terabytes of waveform data were managed by a 2-186

 10

head Hitachi file server. The time required to process the data was about 42 days. 187

Over 370 million correlated waveform segments were found, and these results are 188

still being analyzed. 189

Because we anticipate repeating this processing with even larger datasets and with 190

variations such as multi-channel correlations, we are interested in reducing the 191

processing time significantly. However, a great amount of effort has already been 192

spent optimizing the workflow for the current architecture, and we think only small 193

improvements are possible. Therefore we decided to move the entire workflow to a 194

MapReduce architecture, which is the subject of the rest of this paper. 195

 196

3. Hadoop Software Framework 197

Apache Hadoop is an open source software framework for deploying data-intensive 198

distributed applications. It implements a computational paradigm called 199

MapReduce and the Hadoop Distributed File System (HDFS) derived from Google’s 200

MapReduce and Google File System (GFS) respectively (Dean and Ghemawat , 2004; 201

Ghemawat, 2003) 202

The primary motivation of the MapReduce programming model is to create 203

independent tasks that operate on arbitrary partitions of the input dataset in 204

parallel during the map phase. During the subsequent reduce phase, data that must 205

be rejoined or summarized are shuffled together and processed. When run over a 206

 11

distributed file system such as HDFS with nodes connected to dedicated storage, this 207

framework naturally leverages data locality, whereby tasks running on a particular 208

node process data resident to that node. By moving computation to the data, 209

Hadoop allows exceedingly fast IO and compute performance for highly parallelized 210

algorithms. 211

Hadoop is written in Java, and thus writing MapReduce jobs in Hadoop most 212

commonly involves writing explicit mappers and reducers in Java as well. This 213

deliberate approach to MapReduce programming can encourage the developer to 214

attempt to find a simple mapping of the problem to a single mapper and a single 215

reducer. For many applications, including the waveform correlator, limiting the 216

implementation to one MapReduce job means limiting parallelism where it could be 217

of the greatest benefit. Moreover, the standard Java approach requires significant 218

boilerplate for each job and provides little guidance for chaining jobs into a 219

workflow. Consequently, we explored Pig (Natkovich, 2008) in an effort to find a 220

higher-level tool for applying the MapReduce model. 221

Apache Pig is a platform for creating MapReduce workflows with Hadoop. These 222

workflows are expressed as directed acyclic graphs (DAGs) of tasks that exist at a 223

conceptually higher level than their implementations as series of MapReduce jobs. 224

Pig Latin is the procedural language used for building these workflows, providing 225

syntax similar to the declarative SQL commonly used for relational database 226

systems. In addition to standard SQL operations, Pig can be extended with user-227

defined functions (UDFs) commonly written in Java. We adopted Pig for our 228

 12

implementation of the correlator to speed up development time, allow for ad hoc 229

workflow changes, and to embrace the Hadoop community’s migration away from 230

MapReduce towards more generalized DAG processing (Mayer, 2013). Specifically, 231

in the event that future versions of Hadoop are optimized to support paradigms 232

other than MapReduce, Pig scripts could take advantage of these advances without 233

recoding, whereas explicit Java MapReduce jobs would need to be rewritten. 234

3.1 First Proof of Concept 235

As part of a pilot project facilitated by Livermore Computing (LC), LLNL’s 236

institutional high-performance computing group, an effort began to explore porting 237

the waveform correlator to Hadoop. LC’s development cluster consisted of 10 238

Westmere nodes with 12 cores and 96 GB of RAM each. Most importantly for the IO 239

bound waveform correlator, each node also featured dedicated storage to promote 240

data locality. To compare the performance of the existing solution to Hadoop, a 1 241

terabyte (TB) test dataset was derived from a seismically dense region of the 242

western United States and copied into HDFS. 243

Taking full advantage of the increased computational power and IO throughput of a 244

Hadoop cluster requires significant parallelism of the application-level algorithms. 245

Because every STA-CHAN in the original waveform correlator implementation was 246

an independent task, and there were over 10,000 such tasks to perform, it would 247

seem that the work was more than distributable enough to keep 10 hard-drives and 248

120 compute cores busy. In practice, however, there was significant imbalance in 249

 13

the effort performed by each task, as illustrated by Figure 3, which shows the 250

original implementation’s time to completion for each task on the 1 TB test dataset. 251

As the histogram shows, most tasks in the original implementation executed in a 252

matter of seconds. For these tasks, IO is the natural bottleneck as they do very little 253

beyond reading a waveform, rejecting it, and requesting the next candidate. 254

However, a handful of STA-CHANs containing dense clusters of high-quality data 255

required several hours to fully process, imposing clear computational constraints on 256

the performance. Any single job MapReduce implementation would be similarly 257

constrained by these outliers, given that each mapper and reducer is run within its 258

own single thread of execution. In order to increase the parallelism of the Hadoop 259

correlator, and consequently improve performance, the problem needed to be 260

broken up into finer-grained sub-problems that could be more evenly distributed 261

across the cluster topology. 262

3.2 Overview of Pig Workflow 263

The IO limitation of the original waveform correlator hardware lent itself to an 264

architecture that attempted to minimize IO, going so far as to ensure that each 265

waveform was read no more than once. In contrast, the Hadoop implementation 266

takes advantage of the improved IO throughput by trading reads and writes to gain 267

increased parallelism. As Figure 4 shows, the first proof of concept Hadoop 268

implementation added many additional reads, writes, and transformations to the 269

data that didn’t exist in the original implementation. Despite this increase in design 270

complexity, IO, and computation, a dramatic increase in parallelism across each of 271

 14

the steps allowed us to take full advantage of the cluster hardware. This increased 272

problem granularity meant reduced work done in the bottlenecks, and spread the 273

most computationally intensive procedures over many more threads of execution. A 274

discussion of the major processing steps implemented in this pipeline follows. 275

3.2.1 Join Metadata 276

For the purpose of minimizing disk usage and promoting consistency, LLNL 277

maintains a highly normalized relational database management system (RDBMS) for 278

storing seismic STA-CHAN and waveform metadata. This solution has worked well 279

for our more typical interactive, single-workstation use cases, but creates an 280

immediate bottleneck for highly parallel applications. Specifically, any application 281

spread across tens of nodes and hundreds of cores can quickly saturate both the 282

database’s CPU and the bandwidth of the network interconnect. Going against 283

conventional RDBMS[D1] wisdom, it makes sense in an environment such as Hadoop 284

to denormalize the dataset up front. By doing so, the need to request data randomly 285

is eliminated, and the dataset can easily be partitioned and sent to independent 286

tasks for processing. In contrast, a normalized solution would require each task to 287

make requests for missing chunks of metadata, imposing a network limitation on 288

the task. 289

Pig provides a native “join” function for taking two structured datasets and 290

denormalizing them by some join predicate. Using Apache Sqoop, a command-line 291

tool for transferring data between relational databases and Hadoop, we ingested all 292

necessary Oracle tables into HDFS, and then used Pig to join the datasets into one 293

 15

denormalized metadata[D2] table. Fully denormalized, our metadata took just over 294

50 GB of usable space on disk. 295

We also joined the metadata to the binary waveform signal data directly by 296

attaching a STA-CHAN-EVENT key onto the waveform data itself. By defining a 297

simple schema consisting only of two fields (the unique key and the binary 298

waveform data), we were able to perform a similar join in Pig to create a fully 299

denormalized table containing all the necessary data for a given waveform in a 300

single row along with the trace itself. 301

3.2.2 Get Candidates 302

Having the dataset fully denormalized into rows of waveforms along with all 303

relevant STA-CHAN and event metadata, we next approached the issue of cutting 304

and filtering the waveforms into valid candidates for correlation. This was in 305

contrast to the original processing pipeline that took raw waveforms, checked for 306

nearest neighbors, then cut and filtered the set of neighbors together. In a scenario 307

where IO is the primary performance consideration, it makes sense to avoid cutting 308

and filtering as a preprocessing step, as it necessarily requires reading all raw 309

waveforms once, then writing and reading back in all cut and filtered waveforms in 310

a second pass. 311

But, when IO is cheap, additional passes over the data to massage them into a more 312

workable state can offer significant parallelization benefits. Cutting and filtering a 313

waveform is an independent operation, and can thus be parallelized more finely 314

than the complete set of operations on a STA-CHAN. For the 1 TB test dataset 315

 16

consisting of nearly 10 million traces on about 10 thousand STA-CHANs, that 316

represents a factor of 1,000 more tasks to be spread across the cluster. Such smaller 317

tasks are necessarily less variable in the amount of work to be done, and thus 318

distribute the computational effort more evenly. 319

Another benefit of performing the candidate generation task early in the processing 320

is that it creates an opportunity to filter the input dataset down to something 321

smaller and more manageable. This may seem counter-intuitive considering that S 322

waveforms cut into W windows and filtered into B bands yields as many as SWB 323

candidates. In practice, however, the majority of these preliminary candidates are 324

discarded for having low signal-to-noise ratios or otherwise failing one of the 325

decision tree classifiers used to assess the quality of the data. For the 1 TB test 326

dataset, only about ½ S, or 4.5 million candidates were output from the candidate 327

generation task. 328

3.2.3 Nearest Neighbors 329

Left with only the cut and filtered waveforms that passed the initial quality control 330

tests, the nearest neighbor calculation, too, can be parallelized beyond the STA-331

CHAN granularity with fewer events per task. This is because we only wish to 332

correlate waveforms that are cut into the same window and filtered into the same 333

band, and many of the events for a particular window and band were discarded in 334

the previous step. Thus we can have a separate task for every STA-CHAN-WINDOW-335

BAND with only a fraction of the events to be processed per task. 336

 17

An important implementation detail of the nearest neighbor calculation is that every 337

task requires all of its event spatial data (latitude/longitude coordinates) to be in 338

memory at once. At this point in the processing, this event metadata is currently in 339

a denormalized table with all the binary waveform data, which will certainly not all 340

fit in memory at once for a given STA-CHAN-WINDOW-BAND. Fortunately, Pig 341

provides a mechanism to specify a subset of the fields (or columns, in relational 342

database terms) to be sent to a given function. To reconcile the fact that the spatial 343

event data are small enough to fit in memory, but the waveform data are not, we 344

calculate the nearest neighbors only once. 345

The output from the nearest neighbor calculation will provide two additional pieces 346

of metadata for each waveform: an “island” identifier and a step number. An island 347

of events is a connected component in graph terminology. Given our criterion that a 348

neighboring event is within 50 km, we can say that no two events in separate islands 349

are[TA3] within 50 km of each other. This is useful for the purpose of defining finer-350

grained sub-problems, as individual STA-CHAN-WINDOW-BAND-ISLANDs can now 351

be correlated entirely independently, in parallel. However, even islands of events 352

can be too large to fit entirely in memory, and so we need one additional piece of 353

information to constrain the problem. 354

As mentioned previously, we output a step number for each waveform, representing 355

the order in which we traversed the waveform’s event within its island in the 356

nearest neighbor calculation. We traverse the events within a task by first drawing 357

an event from the set at random. We then use an R-Tree (Guttman, 1984) to fetch 358

 18

all neighboring events within 50 km with logarithmic asymptotic time complexity, 359

and add the neighboring events to a queue. The events on the queue are the next to 360

be processed in a similar manner, adding their previously unseen neighbors to the 361

queue until no more neighbors exist, at which point we have discovered an island. 362

Concretely, we say that for an island of N events, the waveform with step 1 363

corresponds to the first event we draw at random to seed the island, and the 364

waveform with step N corresponds to the last event drawn from the queue that has 365

no previously unseen neighbors. By processing events in a queue, instead of simply 366

drawing them at random, we perform a breadth-first traversal of the island’s 367

corresponding graphical representation. This enables us to process neighboring 368

events together, keeping them in memory while we process their neighbors, then 369

discarding them as we migrate towards sections of the island farther away. 370

Outputting the step value enables us to recreate this migratory processing without 371

needing to keep all the spatial event information in memory during future 372

processing tasks. 373

With the island and step metadata generated, this information is then rejoined to 374

the complete waveform dataset, and grouped together by STA-CHAN-WINDOW-375

BAND-ISLAND using standard Pig functions. 376

3.2.4 Correlate 377

Every STA-CHAN-WINDOW-BAND-ISLAND can be processed independently. First, 378

all events within an island are ordered by ascending step number. This ordered bag 379

of waveform data is then fed to a user-defined function: CORRELATE. This is a 380

 19

special kind of user-defined function called an “accumulator” that processes 381

elements within the ordered bag individually as opposed to loading them into 382

memory at once. In this way, the CORRELATE function is stateful, invoked with one 383

waveform at a time, and outputting to a separate bag of correlations as neighboring 384

events are fed in. These correlations form the final output of the pipeline once 385

flattened into a conventional comma-delimited text file with appropriate metadata 386

attached. 387

Before we accumulate our first waveform, we define an event queue we will add to 388

in the same order as we accumulate events, and we set a variable “current” to define 389

the waveform against which all incoming waveforms will be correlated until they 390

are no longer neighboring events, at which point we can safely discard the current 391

event. This works because of the way we have ordered our events by step number, 392

such that if an event follows another, either it is a neighbor or there are no more 393

neighbors to process. A formal proof of this claim, with accompanying pseudo-code 394

of the CORRELATE algorithm, can be found in the Appendix. 395

Once there are no more neighbors to process, we remove the next event from the 396

queue and declare it to be the current event. Necessarily, the incoming event must 397

be a neighbor of the newly declared current event, or there are no unseen events for 398

the current event. This is shown by Lemma 1 (Appendix). Once there are no more 399

incoming events to accumulate, we drain the queue of its remaining events: 400

correlating each newly removed event against all remaining events on the queue. In 401

practice, we again speed up the neighbor calculation with an R-Tree. 402

 20

3.3 Performance Improvements and Bottlenecks 403

Implementing the Map Reduce workflow described above and deploying it on the 404

Hadoop test cluster yielded a significant performance improvement over the 405

original implementation of the correlator. However, certain bottlenecks in the 406

processing pipeline remained. As Figure 5 illustrates, processing time for 99% of 407

the 1 TB test dataset went from nearly 28 hours on existing hardware to 45 minutes 408

on Hadoop. However, we observe that for the last 1% of the 1 TB test dataset the 409

performance gap does not close as much between the two implementations: 30 410

hours on existing hardware to over 6 hours on Hadoop. 411

Our initial suspicion was that the loose connectivity constraint imposed on the 412

islands was leading to sprawling, yet sparse, islands of events that could be broken 413

up into smaller, and minimally overlapping components. However, experimentation 414

with algorithms including minimum graph cuts (Hao and Orlin, 1994) and the 415

density-clustering DBSCAN (Ester et al., 1996) showed that our dataset contained a 416

handful of large, highly dense islands of quality events. This made the prospect of 417

further refining the granularity of our tasks difficult, since a fully connected graph of 418

events requires that every event be correlated against every other event. In other 419

words, in places where seismicity concentrated there can be a very large number of 420

events within 50 km of each other that require all possible pairs of correlations to 421

be generated. 422

In graph theory terms we can think of an island of neighboring events as a 423

connected component of V vertices (events) and E edges (neighboring relations). In 424

 21

the CORRELATE process described above, we take time-domain waveform 425

segments, and align them with their neighboring event segments before converting 426

them into the frequency domain via a Fast Fourier Transform (FFT). Once the event 427

and all its neighbors are in the frequency domain, we correlate them to produce a 428

correlation coefficient between 0 and 1. Thus we must perform O(E) FFTs per STA-429

CHAN-WINDOW-BAND-ISLAND task. For the extremely dense outlier islands 430

mentioned above, , which implies that () (). For our test dataset, 431

the largest complete island consisted of about 10,000 events, and thus roughly 432

100,000,000 FFTs confined to a single thread of execution. Naturally, this led us to 433

consider ways to do better. 434

3.4 Refined Proof of Concept 435

The goal we had in mind for improving the performance of CORRELATE was to 436

reduce the () FFTs down to a more manageable (). An ideal solution would 437

be to simply compute all FFTs once per event (vertex) and use the transformed, 438

frequency domain segments in the CORRELATE step. This solution would have the 439

added benefit of being embarrassingly parallel, capable of being performed as a pre-440

processing step with one task per waveform segment. However, calculating the 441

FFTs once per event requires additional information about all the events to be 442

correlated that is missing a priori. Before we can transform the segmented data into 443

the frequency domain we need to know the minimum pre- and post-picked arrival 444

times for which all segments to be correlated together have data. Once this 445

information is obtained for a given STA-CHAN-WINDOW-BAND-ISLAND, all the 446

 22

segments can be trimmed down to the same length in seconds. Without trimming 447

the segments to the intersection of their lengths in this manner, we run the risk of 448

producing separate power-of-two length output segments from the FFTs. For the 449

frequency-domain multiplication to work, the basis must of course be the same, and 450

so the minimum pre- and post-pick times must be known prior to performing the 451

FFT. 452

 453

Under the constraint that a given waveform could only be read from disk once, 454

calculating island-wide pre- and post-pick times would be impossible without 455

exhausting heap memory, so in our first implementation we opted instead for 456

performing more FFTs in exchange for less IO. However, that implementation 457

revealed that reading and writing the entire dataset to HDFS could be performed on 458

the order of seconds and minutes. Consequently, our revised solution was simple: 459

add two more passes over the data to the pipeline. 460

 461

The first new task would accumulate an entire STA-CHAN-WINDOW-BAND-ISLAND 462

and calculate the pre- and post-pick times (GetBounds). Those two pieces of 463

additional metadata would then be appended onto the segment-level metadata, and 464

all FFTs would be calculated (FourierTransform[D4]). Each task would take a single 465

waveform and produce exactly one transformed segment, allowing this step to be 466

massively parallelized. This revised workflow is shown in Figure 6. Figure 7 shows 467

that adding the two additional passes over the data, in spite of the increased IO cost, 468

 23

yielded a factor of 10 performance improvement in the CORRELATE routine. The 469

added cost incurred by the highly dense outlier islands was greatly diminished. 470

Both of the additional processing steps contributed negligibly to the overall runtime 471

of the system (less than 15 minutes combined). Most importantly, the CORRELATE 472

runtime was reduced to under an hour of processing. In aggregate, the refined 473

Hadoop implementation yielded a factor of 19 improvement over the original 474

waveform correlator, going from 48 hours on the 1 TB test dataset to under 3 hours 475

in total[D5]. 476

These performance gains include the time to read and write the data from and to 477

HDFS, and were obtained in spite of the dramatic increase in total IO over the 478

original implementation shown in Figure 8. 479

4.0 Discussion 480

The Hadoop model of distributing the data with the computations presents a 481

paradigm shift for the data-intensive scientific computing community. It 482

demonstrates the need to change algorithmic priorities to fully take advantage of 483

these powerful systems. Instead of asking ourselves how we can decrease the IO 484

burden, as we did in our original implementation of the waveform correlator, we 485

now find ourselves asking how we can increase the parallelism of our algorithms. 486

Whereas before we had lots of CPU which could not be fully utilized, now we have 487

blazingly fast IO and imbalanced CPU load. The process of finding new ways to 488

break apart one’s algorithms into finer-grained sub-problems is at the heart of the 489

Hadoop philosophy: scale out, not up. 490

 24

Based on our 1TB test data set and the factor of 19 performance increase found by 491

moving to the HADOOP architecture, we expect we will be able to re-correlate our 492

entire ~50 TB, ~300 million waveform database in about 2 days instead of the 493

original 42 days. This will dramatically improve our ability to conduct research on 494

massive seismic datasets, and we intend to describe those results in future papers. 495

The lessons of this study, making use of HADOOP to increase parallelism instead of 496

reducing IO, apply to many massive datasets of time series data, which are common 497

in geophysics and other fields. 498

 499

5.0 Acknowledgements 500

This work was performed under the auspices of the U.S. Department of Energy by 501

Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. 502

Lawrence Livermore National Security, LLC 503

 504
 505

 506

 25

References 507

 508
Anstey, N.A., 1966. Correlation Techniques—A Review,Can. J. Expl. Geophys., 2, 55–509
82. 510
 511
Dean, J., and S. Ghemawat. MapReduce: Simplified Data Processing on Large 512
Clusters. In 513
OSDI’04, 6th Symposium on Operating Systems Design and Implementation, 514
Sponsored by USENIX, in cooperation with ACM SIGOPS, pages 137–150, 2004. 515
 516
Ester, M., H. Kriegel, J. Sander, X. Xu (1996). "A density-based algorithm for 517
discovering clusters in large spatial databases with noise". In Evangelos Simoudis, 518
Jiawei Han, Usama M. Fayyad. Proceedings of the Second International Conference on 519
Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231. 520
 521
Fremont, M.J., and S. D. Malone (1987). High precision relative locations of 522
earthquakes at Mount St. Helens, Washington, J. Geophys. Res. 92, 10,233–10,236. 523
 524
Geller, R. J., and C. S. Mueller, Four similar earthquakes in central California, 525
Geophys. Res. Lett., 7, 821-824, 1980 526
 527
Ghemawat, S., H. Gobioff, S. Leung, (2003), "The Google File System", 19th 528
Symposium on Operating Systems Principles (conference), Lake George, NY: 529
The Association for Computing Machinery. 530
 531
Got, J. L., J. Frechet, and F. W. Klein (1994). Deep fault plane geometry inferred from 532
multiplet relative relocation beneath the south flank of Kilauea, J. Geophys. Res. 99, 533
15,375–15,386. 534
 535
Guttman, A. (1984). "R-Trees: A Dynamic Index Structure for Spatial 536
Searching". Proceedings of the 1984 ACM SIGMOD international conference on 537
Management of data - SIGMOD '84. p. 47. doi:10.1145/602259.602266. 538
 539
Harris, D. (2006), Subspace detectors: Theory, Lawrence Livermore Natl. Lab. Rep. 540
UCRL-TR-222758, 46 pp., Lawrence Livermore Natl. Lab., Livermore, Calif. 541
 542
Harris, D. and D. Dodge (2011). An autonomous system for grouping events in a 543
developing aftershock sequence, Bull. Seism. Soc. Am. 101, 763-774, 544
doi:10.1785/0120100103. 545
 546
Hauksson, E., and P. Shearer (2005). Southern California hypocenter relocation with 547
waveform cross-correlation, part 1: Results using the double-difference method, 548
Bull. Seism. Soc. Am. 95, 896–903. 549
 550

 26

Hao, J. X., J., B., Orlin, (1994), "A Faster Algorithm for Finding the Minimum Cut in a 551
Directed Graph". Journal of Algorithms 17 (3): 424. doi:10.1006/jagm.1994.1043 552
 553
Mayer, C., (2013), Hortonworks announce Stinger to solve Hadoop’s real-time 554
headache, http://jaxenter.com/hortonworks-announce-stinger-to-solve-hadoop-s-555
real-time-headache-46261.html. 556
 557
Natkovich, O. (2008), Pig – The Road to an Efficient High-level language for Hadoop, 558
Hadoop Blog. http://developer.yahoo.com/blogs/hadoop/pig-road-efficient-high-559
level-language-hadoop-413.html. 560
 561
Poupinet, G., W. L. Ellsworth, and J. Frechet (1984). Monitoring velocity variations in 562
the crust using earthquake doublets: an application to the Calaveras fault, California, 563
J. Geophys. Res. 89, 5719–5731. 564
 565
Rubin, A. M., D. Gillard, and J.-L. Got (1999). Streaks of microearthquakes along 566
creeping faults, Nature 400, 635–641. 567
 568
Schaff, D. P., and P. G. Richards (2004). Repeating seismic events in China, 569
Science 303, 1176–1178. 570
 571
Schaff, D. P., and P. G. Richards (2011). On finding and using repeating seismic 572
events in and near China, J. Geophys. Res. 116, doi:10.1029/2010JB007895 573
 574

 27

Figure Captions 575

Figure 1 shows the waveform density (number of waveforms in database per cell 576
divided by the total number of waveforms). Color is proportional to log(density) 577
with black lowest and white highest. Note that although the data set has global 578
coverage, the density is highest in the Middle East, Eurasia, and Western North 579
America. 580

Figure 2 is a schematic illustration of the processing applied to a single channel for a 581
pair of events observed by a single station. For each of B bands the seismograms are 582
filtered and cut into W phase windows. For each window pair, the cross correlation 583
function is computed and the max and its associated shift are recorded in the 584
database. 585

Figure 3 shows the time to completion for each STA-CHAN task on the original 586
architecture for the test dataset. Outlier tasks take several orders of magnitude 587
longer to complete than average. 588

Figure 4 shows the first proof of concept implementation of the waveform 589
correlator as a Pig workflow consisting of many finely-grained passes over the data. 590

Figure 5 is a comparison of processing times for the test dataset on the original 591
architecture (left) and the first Hadoop implementation (right). Times are in 592
seconds. 593

Figure 6 shows the revised Hadoop processing flow with the added “Get Bounds” 594
and “Fourier Transform” processing steps. 595
 596
Figure 7 shows the comparison of processing times for the test dataset on the 597
original architecture (left) and the final Hadoop implementation (right). Times are 598
in seconds. 599

Figure 8 is a comparison of read/write times for the original implementation and 600
the final Hadoop implementation. Times are in seconds. 601

 602

 28

Figures 603

 604

Figure 1 605

 606

 29

 607

Figure 2 608

 609

 30

 610

 611

Figure 3 612

 31

 613

Figure 4 614
 615

 32

 616

Figure 5 617

 618

 33

 619

Figure 6 620

 34

 621

Figure 7 622

 623

0

50000

100000

150000

200000

250000

Traditional Hadoop

Correlate

Fourier Transform

Get Bounds

Nearest Neighbors

Get Candidates

Fetch Metadata

 35

 624

Figure 8 625

 626

 627

 628

 36

Appendix 629

The CORRELATE function, in pseudo code, works as follows: 630

current = null 631
queue = new Queue() 632
 633
CORRELATE(incoming): 634
 if current == null: 635
 current = incoming 636
 else: 637

queue.add(incoming) 638
 if neighbors(current, incoming): 639
 correlate(current, incoming) 640
 else: 641
 while not neighbors(current, incoming): 642
 current = queue.dequeue() 643
 for w in queue: 644
 if neighbors(current, w): 645
 correlate(current, w) 646

 647

Lemma 1: In the CORRELATE calculation, there is at all times a current event being 648

correlated against all incoming events being removed from the queue. If an 649

incoming event is not the neighbor of the current event, then all of the current 650

event’s neighbors have been correlated against the current event. 651

Proof: In the NEAREST NEIGHBORS calculation, there is at all times a current event 652

whose step number corresponds to the order it was removed from the queue in the 653

breadth-first search. All of the current event’s unseen neighbors are added to the 654

queue together and assigned a step number greater than that of the current event. 655

All previously unseen neighbors will be processed in a sequence together called the 656

unseen sequence. 657

 37

By induction on the current event in the CORRELATE calculation, we will show that 658

CORRELATE has correlated all of the current event’s neighbors (the current 659

candidates) by the time an incoming event is accumulated that is not a current 660

candidate. 661

In the base case, at step 1, we accumulate the first incoming event from the bag of 662

island events ordered by step number and promote it to be the current event. There 663

are two possibilities: either the current event has an unseen sequence of current 664

candidates to correlate, or it does not. If there is no remaining unseen sequence to 665

process, then our claim is correct by definition. Thus we assume that the current 666

event has an unseen sequence that needs to be processed. If the next incoming 667

event is not a current candidate, then it must be part of another event’s unseen 668

sequence by definition of the connectivity of an island. By definition of the current 669

event, the incoming event must be part of the unseen sequence of an event with a 670

higher step number than the current event. But the current event’s unseen 671

sequence must necessarily come before the unseen sequence of any subsequent 672

events by definition of the step number, and so this is a contradiction. Thus there 673

are no more neighbors to correlate against the current event. 674

Suppose the claim holds for current events up to step k-1. At step k, we remove the 675

kth event accumulated from the queue and promote it to be the current event. We 676

then proceed to correlate it against all the elements on the queue. If the current 677

event had any neighbors with a lower step number than itself, they were correlated 678

earlier in the process by our assumption. Thus the only current candidates 679

 38

remaining must come from incoming events. Without loss of generality, we can 680

apply the same reasoning to incoming events as applied in the base case to 681

demonstrate that all remaining neighbors must be part of the next incoming 682

sequence, or there are none left to correlate against the current event, and so the 683

CORRELATE algorithm does not miss any potential correlations. 684

